skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Weiying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this study, we used Epistemic Network Analysis (ENA) to represent data generated by Natural Language Processing (NLP) analytics during an activity based on the Knowledge Integration (KI) framework. The activity features a web-based adaptive dialog about energy transfer in photosynthesis and cellular respiration. Students write an initial explanation, respond to two adaptive prompts in the dialog, and write a revised explanation. The NLP models score the KI level of the initial and revised explanations. They also detect the ideas in the explanations and the dialog responses. The dialog uses the detected ideas to prompt students to elaborate and refine their explanations. Participants were 196 8th-grade students at a public school in the Western United States. We used ENA to represent the idea networks at each KI score level for the revised explanations. We also used ENA to analyze the idea trajectories for the initial explanation, the two dialog responses, and the final explanation. Higher KI levels were associated with more links and increased frequency of mechanistic ideas in ENA representations. Representation of the trajectories suggests that the NLP adaptive dialog helped students who started with descriptive and macroscopic ideas to add more microscopic ideas. The dialog also helped students who started with partially linked ideas to keep linking the microscopic ideas to mechanistic ideas. We discuss implications for STEM teachers and researchers who are interested in how students build on their ideas to integrate their ideas. 
    more » « less
  2. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
  3. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
    This study takes advantage of advances in Natural Language Processing (NLP) to build an idea detection model that can identify ideas grounded in students’ linguistic experiences. We designed adaptive, interactive dialogs for four explanation items using the NLP idea detection model and investigated whether they similarly support students from distinct language backgrounds. The curriculum, assessments, and scoring rubrics were informed by the Knowledge Integration (KI) pedagogy. We analyzed responses of 1,036 students of different language backgrounds taught by 10 teachers in five schools in the western United States. The adaptive dialog engages students from both monolingual English and multilingual backgrounds in incorporating additional relevant ideas into their explanations, resulting in a significant improvement in student responses from initial to revised explanations. The guidance supports students in both language groups to progress in integrating their scientific ideas. 
    more » « less
  4. Blikstein, P; Van_Aalst, J; Kizito, R; Brennan, K (Ed.)
    We explored how Natural Language Processing (NLP) adaptive dialogs that are designed following Knowledge Integration (KI) pedagogy elicit rich student ideas about thermodynamics and contribute to productive revision. We analyzed how 619 6-8th graders interacted with two rounds of adaptive dialog on an end-of-year inventory. The adaptive dialog significantly improved students’ KI levels. Their revised explanations are more integrated across all grades, genders, and prior thermodynamics experiences. The dialog elicited many additional ideas, including normative ideas and vague reasoning. In the first round, students refined their explanation to focus on their normative ideas. In the second round they began to elaborate their reasoning and add new normative ideas. Students added more mechanistic ideas about conductivity, equilibrium, and the distinction between how an object feels and its temperature after the dialog. Thus, adaptive dialogs are a promising tool for scaffolding science sense-making. 
    more » « less